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Abstract. Beam dynamics estimations of a 15.6GHz ceramic RF power generator have been 
performed for an experiment planned at the upgraded AWA facility at ANL.  Theoretical maximum 
peak power that can be generated exceeds 100-150 MW.  Analytical and numerical calculations 
address the following issues:  50A+ heavy beam loading in linac, slow-wave structures, coupler and 
damper; beam breakup and dipole mode suppression, end-to-end beam transport, and generated RF 
waveform and spectrum.  Comparison is made with an earlier 21GHz experiment in a 
DULY/CERN/ANL collaboration. 

INTRODUCTION 

In a companion paper [1] we have presented design features of a 15.6GHz 
extractor/coupler and compared it to a previous 21GHz design [2,3]. Here we are 
considering beam dynamics and performance of the dielectric power extractor to be 
driven by the Argonne Wakefield Accelerator (AWA) [4]. The L-band facility is being 
upgraded to produce an improved-quality electron beam with up to 100nC bunches and 
energy up to 19MeV [5].  

Let us outline here some of the parameters and effects related directly to the beam 
dynamics and performance of the 15.6GHz extractor: higher maximum beam currents 
(over 100A instead of 17.2A) raise the limit of RF power but can simultaneously 
enhance non-linear effect of RF losses [6] and RF breakdown, larger energy spread in 
both the driver linac and the extractor; heavy beam loading and collective instabilities; 
higher harmonic operation (12th vs. 7th) broadens the spectrum of the pulse generated and 
can diminish extractor efficiency. In addition, beam interaction with such elements as the 
damper, the taper, and the coupler, having trapped modes, is also of our interest. 

                                                 
* Work supported by DOE SBIR grant number DE-FG03-01ER83232. 
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TM01 OPERATING MODE FIELDS INDUCED IN THE 
EXTRACTOR 

Table 1 gives comparative parameters of two extractors with ceramic tubes supplied 
by Euclid Concepts Inc.  These cold parameters are calculated with an accurate 
analytical model that was used also to benchmark the GdfidL code [7] in frequency 
domain. The saturated power generated by an equidistant bunch train in a slow-wave 
system is the following:  
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is the bunch formfactor, q is the bunch charge, vhf /)(2 ωπω ==  is the resonant 
frequency, cv /=β , ck /ω= , ( )( )ββ /11/2 grbhs fnfQa −−=  is the generalized detuning, fb 
is the bunch train frequency, )/( bh ffIntegern =  is the resonant harmonic number, L is the 
interaction length, and grvfQ /πα =  is the attenuation constant. Formula (1) accounts for 
detuning and, along with the solution of boundary problem, allows to define tolerances 
for geometrical and material imperfections [1]. It is accurate for a given monopole mode 
in an arbitrary slow-wave non-tapered guide if the following is satisfied:  
 ( )[ ] 1/,12

211 >>−>>− −− cfLQ bgrgr ββββ  (2) 
Correspondingly, for a single bunch the maximum (peak) radiated power is the 
following: 
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Equation (3) includes the power absorbed in the dielectric and is accurate if conditions 
(2) are applied, where fb is replaced by f.  

The main characteristics are calculated at 1<<sa  in Table 2, where tf is the filling time 
for a regular dielectric length L=30cm, δz is the r.m.s. length assuming Gaussian bunch 
with the formfactor ( )2/)/(exp 2βδ zb k−≈Φ , and Nf is the minimum number of bunches 
required to achieve saturation.  

 

TABLE 1.  Geometry and RF properties of regular dielectric part of the power generators. 
f, GHz material ε tgσ Apert. ∅=2a, 

mm 
OD, mm r/Q, 

kΩ/m 
Q βgr

21 corderite 4.72 0.0005 10 12.94 6.48 2252 0.354 
15.6 forsterite 6.64 0.0005 12 15.42 5.64 2002 0.264 

 
TABLE 2.  Main performance characteristics at L=0.3m. 
f, GHz q, nC fb, 

GHz 
I=q⋅fb,, A δz, mm tf, ns Nf=[tf⋅fb] Φb P1b, 

MW 
N>Nf 

:P,MW 
21 5.73 3 17.2 1 2.83 8 0.97 1.6 38.6 

15.6 40 1.3 52 3 3.79 4 0.62 20 148 
 

In our earlier 21GHz test at the CTF2, the maximum available total charge of the 
bunch train was limited by the extractor aperture to 275nC (i.e. q=5.7nC). The ultimate 
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power was therefore considerably less than that planned initially at q=10nC operation.  
The upgraded high-current AWA facility, along with our new 15.6 GHz design, gives an 
opportunity of higher output power (see Table 2) provided such effects as reflections, 
secondary electron emission (see [6]) and breakdown, beam transport and instabilities do 
not dominate or distort the performance. Because of the rapid decrease of the formfactor 
for higher harmonic numbers, the 12th harmonic of operation is already at the edge of 
operational efficiency.  On the other hand, it means better suppression of higher 
frequency modes. 

The dielectric extractor can be characterized efficiently with an analytical model in 
the time domain. Reflections, jitter, TM0n HOMs, and group front diffusion can be 
included in the model [8]. Estimations made for our parameters given in Table 1 indicate 
that the monopole HOMs are not significant due to its much higher frequencies and very 
low formfactor. Estimated group front diffusion due to dispersion of group velocity is 
also negligible. Examples of RF envelopes and spectra of the signal modeled are 
depicted in Figure 1. One can see spectrum improvement at longer lengths: the main 
peak narrows, satellite peaks getting smaller. Bigger ratio of drain time to bunch 
separation gives better overlapping of wave packets radiated by individual bunches. 
However, too long an extractor length can be detrimental in terms of beam dynamics – 
beam transport and transverse stability.  
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FIGURE 1.  On the top: waveforms of the longitudinal field near the matched end of the dielectric tube 
of different lengths of regular part L. The dashed horizontal line corresponds to the formula (1). On the 
bottom: the corresponding field spectra. δz =3mm, q=40nC, number of bunches Nb=16. 
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From Figure 1 one can estimate the minimum bandwidth required for the coupler. 
Neglecting jitter and reflections the signal bandwidth is about 0.33GHz (at the level of 
10%) at L=30cm. 

BEAM LOADING AND OTHER WAKEFIELD EFFECTS 

We distinguish several sources of energy losses: beam loading in linac cavities and 
regular dielectric tube, excitation of the modes trapped in the coupler, and wakefield 
losses in the damper and taper(s).  

Let us estimate the transient beam loading (stored energy mode) in the two-section 
SW driver linac fed by 10+10MW RF power. The shunt impedance per section is 
10.26MΩ (including transit-time factor) and unloaded Q-factor is 16860 as it is defined 
from preliminary Superfish calculations. Energy gain of the first q=40nC bunch is 
20.06MeV, whereas the last bunch of the 20ns pulse gains only 14.9MeV. We assumed 
here nearly critical coupling and neglected phase detuning caused by beam loading in the 
first cavity of the photoinjector. 

Comparable energy losses occur in the regular part of dielectric tube. In Table 3 we 
defined energy losses assuming Nbunches≥Nf for different lengths of the bunch and 
dielectric.  

 

TABLE 3.  Kinetic energy loss of trailing bunches and radiated power at saturation in the 
regular dielectric tube 

σz=2mm (∆tb=6.7ps) σz=3mm (∆tb=10ps) Dielectric L 
regular, m 

q, nC 
∆Emax, MeV P, MW ∆Emax, MeV P, MW 

40 6.52 253 5 148 
30 4.89 142 3.75 83 0.3 
20 3.26 63 2.5 37 
40 9.55 367 7.31 215 
30 7.17 207 5.48 121 0.365  
20 4.78 92 3.66 54 

          

The next element where the losses can take place is the coupler. A dominant trapped 
mode of TM010-type was identified at frequency ftr=8.1GHz from simulations [1]. 
Analytical calculation of the kinetic energy loss along the train is given in Figure 2. 
Noticeable frequency detuning ftr/fb=6.23 prevents from building-up of a resonant 
trapped field. Average kinetic energy loss over the pulse length is insignificant 
(<0.1MeV).  

The upstream damper and downstream taper (see [1]) can be analyzed with a similar 
analytical approach as the regular dielectric. The SiC absorber with ε=13.2 and tgσ=0.20 
has a 12mm regular length and an 18mm long taper (from 2a=12mm to 14.5mm ID). The 
main difference is that bunches radiate independently, without space-time building-up of 
the field. There are three reasons of that: i) drain time for the damper and tapers is much 
less than the inter-bunch interval; ii) low Q-factor of the damper reduces dramatically the 
wake attenuation length Sw att.=λQ|β-βgr|/π; and iii) tapering and strong attenuation result 
in decoherence.  

For the regular part of the HOM damper, we have f=11.7GHz, r/Q=5.2kΩ/m, Q=6.5, 
βgr=0.12 and kinetic energy lost by a 40nC, 3mm bunch is 0.027MeV 
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FIGURE 2.  Kinetic energy losses (MeV) of different bunches along the train interacting with the 
dominant mode trapped into the coupler (circles on the dashed line). The losses averaged over the train are 
shown with diamonds (dotted line) 

 
To estimate the losses in the adiabatic taper it is convenient to apply (3). Indeed, since 

the local power does not depend on the interaction length, the electrodynamical 
parameters (including resonant frequency) can be assumed in this formula as 
corresponding functions on the longitudinal coordinate. Those can be calculated 
analytically from the boundary problem variations at different dielectric thickness. For 
instance, near the edge of the damper taper the local parameters are the following: 
f=30.2GHz, Q=26, r/Q=1.6kΩ/m and βgr=0.62. The losses of kinetic energy integrated 
over the entire 3cm damper length are ~0.05MeV.  

Analogously, one can analyze the dielectric taper. Near the downstream edge of the 
taper we have f=35GHz, Q=5200, r/Q=1.21kΩ/m, |Φb|=0.086 and βgr=0.74. The energy 
losses integrated over the 21mm taper are ~0.02 MeV. Thus the sum of losses in the 
tapers and absorber is about 0.09 MeV.  

We do not consider here transient (or diffraction) radiation losses from the stopper 
ring (see [1]) and in the dielectric-to-metal and SiC-to-ceramics transitions. Well-
benchmarked analytical diffraction model [9] can be applied with corresponding 
modifications of the approach [10]. However, the losses are negligibly small due to 
substantial length of the bunch, smoothed transitions (dielectric thickness is only 0.475 
mm on the edge), and proximity to the metal pipe wall. One can expect even smaller 
diffraction losses in the transitions from regular dielectric to taper and at coupler steps 
out.  

Transverse stability 

For the regular part of the rf extraction dielectric tube there are two asymmetric 
modes: ~14.2GHz for a dipole mode, and ~16GHz for a quadrupole mode. Although the 
coupler is intentionally symmetrized with two 120° cavities [1], both modes can 
potentially develop into BBU effect due to the relatively low beam energy and high 
current, some mode transformation at imperfect transmission in the coupler, beam noise 
(and/or cumulated displacements in linac – see below), and misalignments. We estimate 
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here analytically dipole mode effect only, but most of qualitative conclusions can be 
applied for the quadrupole mode as well.  

Since the initial sources of the transverse instability are usually beyond of our control, 
we will use the threshold current and increment to characterize approximately this 
collective effect. In general the dipole mode is not matched for both ends of the slow 
wave system of extractor, and beam pulse length exceeds the doubled filling time for this 
mode (β1gr=0.434). Hence we can apply the formula derived for single-mode 
regenerative instability: 
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( )11 −− −= ββθ rrr Lk  is the phase slippage between the beam and the dipole mode (≈2.61 at 
maximum increment),  is the transverse shunt impedance of the structure per unit 
length (Wilson’s definition [11]), 

⊥r

rΨ  is the bunch formfactor with respect to the dipole 
mode, 21,/,/ rrrrr hccv βγωββ −=′== , ( ) ( )yExHZ zrzrr ∂∂∂∂=Ξ // 00

0  is the hybrid coupling 
coefficient (from the generalized Panofsky-Wenzel theorem accounting the Lorentz’ 
force and slippage [8]).  

Note, since  and 2/1~ LI thr ( )2~ ILP  (see (1) and (2)), the ultimate power limited by 
regenerative BBU is also inversely proportional to the length squared: . 2~)( −LIP thr

The transverse shunt impedance =597Ω/m was found from both versions of 
GdfidL [7] (0.3% difference). Hybrid coupling coefficient ≈0.9 was calculated both 
analytically [8] and from GdfidL (the difference is ~11%). The imperfect reflections 
from the ends can be taken into account as decreased loaded Q-factor for the dipole 
mode. In the absence of the damper we assumed here Q

Qr /⊥

rΞ

loaded ≈1000. The characteristics 
of the multi-bunch instability are estimated in Table 4. The last column gives the 
solenoidal magnetic field required to raise the threshold current up to the operating 
current.  

 

TABLE 4.  Regenerative BBU characteristics for dielectric tube L=0.3m, 15MeV, q=40nC (I=52A). 
∆tb, ps Ithr, A (Bz=0) Increment ν, GHz (Bz=0) Bz, T (Ithr=52A=I) 

10 12 0.15 0.78 
6.7 9.6 0.2 0.97 

 

One can see the increments are only by 6.6-8.7 times less than the bunch sequence 
frequency and simultaneously the threshold currents are noticeably less than the 
operating current 52A. It represents a serious likelihood of the instability.  For 
comparison: in the 21GHz experiment we had I≈17A (39MeV, 275nC train) and 
Ithr≈8.4A, ν=0.06GHz increment at Qloaded ≈1000, and σz≤1mm. Under these conditions 
the rise time is about the same as the pulse length. Analysis of experimental results 
indicated several signs of development of transverse instability [1].  

We can increase the regenerative threshold current by substantial reduction of loaded 
Q-factor of the dipole mode with damping load. The load reduces only the upstream 
reflection coefficient Γ1, whereas the downstream reflection coefficient Γ2 (from 
coupler) remains very close to unity. Estimation of the corresponding external Q-factor 
determined by the end reflections is the following [8]:  
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For the two-resonator SW driver linac the corresponding characteristics are very 
different.  The estimated resonant dipole mode frequency is about 1.6GHz, 

=271Ω/m, resonator length L≈1m, and βQr /⊥ 1gr=0.041. Since the group velocity is very 
small, and the beam pulse is short (compared to 2L/cβ1gr), the effect of the reflections 
from the ends is negligible because this is stored energy mode of beam interaction with 
the transverse collective wake. Under these SW conditions the effective Q-factor in (4) is 
essentially the same as unloaded Q-factor for the SW dipole mode (Q≈14860 found from 
GdfidL code). The same formally follows from (5): since the linac structure is a cavity, 
Γ1Γ2→1, and Qe→∞. Although the resulting threshold current is low (about 1A or even 
less), the increment is low as well (~0.023GHz for 40nC bunches) due to very high 
quality factor of each cell. So the rise time exceeds the pulse duration. In the absence of 
BBU the linac can still act as an initial source of transverse beam modulation: it will 
amplify any transverse perturbation occurred in the injector or linac. More detailed 
analysis may be required such as end-to-end time-domain 3D self-consistent beam 
simulations with inclusion of the longitudinal dynamics.   

SINGLE-BUNCH MODE AND BEAM TRANSPORT 

Peak power (3) generated by a single bunch does not depend on detuning and 
dielectric length (as long as the drain time is long enough compared to the RF period). 
For a 100nC, 10ps (σz=3mm) bunch we can obtain P1b=77 MW. No adjustment of 
resonant linac frequency is necessary. The pulse length is proportional to the regular 
dielectric length L and is equal to the drain time ∆t=2.8ns (≈43 rf cycles) for L=30cm. 
Beam loading causes additional energy spread due to energy loss of trailing particles in 
the bunch. The maximum loss is ∆Emax=3.5MeV, and the energy loss averaged over the 
bunch is ∆Eav≈2.15MeV.  

 

 

FIGURE 3.  Beam line scheme and r.m.s. beam envelops in AWA and extractor simulated with 
PARMELA at E=16MeV, Q=60-80nC. 
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The upgraded AWA facility presents a unique opportunity to exceed 100MW peak 
power in the single-bunch mode for a short enough bunch. For instance, assuming 
σz=2mm (6.7ps), q=100nC we have: P1b=131 MW, ∆Emax=4.5MeV, and ∆Eav=3.7MeV.  

 

 
FIGURE 4.  R.M.S. envelops at E=19MeV Q=20-100nC.  

 
Single-bunch transport was simulated with PARMELA code from the cathode to the 

downstream end of the extractor at different bunch charges (see Figure 4). Although 
these simulations do not take into account wakefield effects, they demonstrate a very 
good acceptance of the accelerator and beam optics to accommodate individual bunches 
up to 100nC. 
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